根据Github整理。

内容包括分布式锁、分布式事务、CAP、BASE、Paxos、Raft等等。

一、分布式锁

在单机场景下,可以使用语言的内置锁来实现进程同步。但是在分布式场景下,需要同步的进程可能位于不同的节点上,那么就需要使用分布式锁。

阻塞锁通常使用互斥量来实现:

  • 互斥量为 0 表示有其它进程在使用锁,此时处于锁定状态;
  • 互斥量为 1 表示未锁定状态。

1 和 0 可以用一个整型值表示,也可以用某个数据是否存在表示。

数据库的唯一索引

获得锁时向表中插入一条记录,释放锁时删除这条记录。唯一索引可以保证该记录只被插入一次,那么就可以用这个记录是否存在来判断是否存于锁定状态。

存在以下几个问题:

  • 锁没有失效时间,解锁失败的话其它进程无法再获得该锁。
  • 只能是非阻塞锁,插入失败直接就报错了,无法重试。
  • 不可重入,已经获得锁的进程也必须重新获取锁。

Redis 的 SETNX 指令

使用 SETNX(set if not exist)指令插入一个键值对,如果 Key 已经存在,那么会返回 False,否则插入成功并返回 True。

SETNX 指令和数据库的唯一索引类似,保证了只存在一个 Key 的键值对,那么可以用一个 Key 的键值对是否存在来判断是否存于锁定状态。

EXPIRE 指令可以为一个键值对设置一个过期时间,从而避免了数据库唯一索引实现方式中释放锁失败的问题。

Redis 的 RedLock 算法

使用了多个 Redis 实例来实现分布式锁,这是为了保证在发生单点故障时仍然可用。

  • 尝试从 N 个相互独立 Redis 实例获取锁;
  • 计算获取锁消耗的时间,只有当这个时间小于锁的过期时间,并且从大多数(N / 2 + 1)实例上获取了锁,那么就认为锁获取成功了;
  • 如果锁获取失败,就到每个实例上释放锁。

Zookeeper 的有序节点

1. Zookeeper 抽象模型

Zookeeper 提供了一种树形结构级的命名空间,/app1/p_1 节点的父节点为 /app1。

https://github.com/CyC2018/CS-Notes/raw/master/pics/31d99967-1171-448e-8531-bccf5c14cffe.jpg

2. 节点类型

  • 永久节点:不会因为会话结束或者超时而消失;
  • 临时节点:如果会话结束或者超时就会消失;
  • 有序节点:会在节点名的后面加一个数字后缀,并且是有序的,例如生成的有序节点为 /lock/node-0000000000,它的下一个有序节点则为 /lock/node-0000000001,以此类推。

3. 监听器

为一个节点注册监听器,在节点状态发生改变时,会给客户端发送消息。

4. 分布式锁实现

  • 创建一个锁目录 /lock;
  • 当一个客户端需要获取锁时,在 /lock 下创建临时的且有序的子节点;
  • 客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁;否则监听自己的前一个子节点,获得子节点的变更通知后重复此步骤直至获得锁;
  • 执行业务代码,完成后,删除对应的子节点。

5. 会话超时

如果一个已经获得锁的会话超时了,因为创建的是临时节点,所以该会话对应的临时节点会被删除,其它会话就可以获得锁了。可以看到,Zookeeper 分布式锁不会出现数据库的唯一索引实现的分布式锁释放锁失败问题。

6. 羊群效应

一个节点未获得锁,只需要监听自己的前一个子节点,这是因为如果监听所有的子节点,那么任意一个子节点状态改变,其它所有子节点都会收到通知(羊群效应),而我们只希望它的后一个子节点收到通知。

二、分布式事务

指事务的操作位于不同的节点上,需要保证事务的 ACID 特性。

例如在下单场景下,库存和订单如果不在同一个节点上,就涉及分布式事务。

本地消息表

本地消息表与业务数据表处于同一个数据库中,这样就能利用本地事务来保证在对这两个表的操作满足事务特性,并且使用了消息队列来保证最终一致性。

  1. 在分布式事务操作的一方完成写业务数据的操作之后向本地消息表发送一个消息,本地事务能保证这个消息一定会被写入本地消息表中。
  2. 之后将本地消息表中的消息转发到 Kafka 等消息队列中,如果转发成功则将消息从本地消息表中删除,否则继续重新转发。
  3. 在分布式事务操作的另一方从消息队列中读取一个消息,并执行消息中的操作。

https://github.com/CyC2018/CS-Notes/raw/master/pics/e3bf5de4-ab1e-4a9b-896d-4b0ad7e9220a.jpg

2PC

两阶段提交(Two-phase Commit,2PC),通过引入协调者(Coordinator)来协调参与者的行为,并最终决定这些参与者是否要真正执行事务。

1. 运行过程

1.1 准备阶段

协调者询问参与者事务是否执行成功,参与者发回事务执行结果。

https://github.com/CyC2018/CS-Notes/raw/master/pics/04f41228-375d-4b7d-bfef-738c5a7c8f07.jpg

1.2 提交阶段

如果事务在每个参与者上都执行成功,事务协调者发送通知让参与者提交事务;否则,协调者发送通知让参与者回滚事务。

需要注意的是,在准备阶段,参与者执行了事务,但是还未提交。只有在提交阶段接收到协调者发来的通知后,才进行提交或者回滚。

https://github.com/CyC2018/CS-Notes/raw/master/pics/2991c772-fb1c-4051-a9c7-932b68e76bd7.jpg

2. 存在的问题

2.1 同步阻塞

所有事务参与者在等待其它参与者响应的时候都处于同步阻塞状态,无法进行其它操作。

2.2 单点问题

爱女友,爱生活
0
0
发表留言

文章
系统设计-分布式
根据Github整理。内容包括分布式锁、分布式事务、CAP、BASE、Paxos、Raft等等。一、分布式锁在单机场景下,可以使用语言的内置...
扫描右侧二维码继续阅读
November 4, 2018
zlatanera
blogger
王誉睿
我是网站主理人Jackie·Wong,一名95后。某国企从业人员,Notion爱好者,大学期间修过电脑和手机、卖过奶茶、得过国家专利,热爱读书、电影和数码,喜欢和女朋友旅游记录生活,对未知事物拥有无限的好奇心,一名脑洞随时大开的老男孩。
我的其他网站:

Jackieの生活觀察(Notion主页)
逝去的武林
BBtime

此网站用RSSHub插件可以添加到RSS阅读器中方便查看哦

统计
文章:156 篇
分类:4 个
评论:25 条
运行时长:1年346天
by yoniu.
zlatanera